
Data-parallel Real-Time Perception System with
Partial GPU Acceleration for Autonomous Driving

Sol Ahn∗, Seungha Kim∗, Ho Kang, and Jong-Chan Kim
Graduate School of Automotive Engineering, Kookmin University, Korea
{solahn00, hailee98, rkdghrk12, jongchank}@kookmin.ac.kr

Abstract

Real-time perception systems should maximize system performance by efficiently
utilizing given computing resources. To this end, many perception systems employ
the multithreaded pipeline architecture to leverage its task-level parallelism. In
this architecture, however, imbalanced pipeline stages cause significant pipeline
stalls. Moreover, limited task-level parallelism prevents us from fully utilizing
the often more than a dozen CPU cores, which are common in recent SoCs. With
this observation, we shift from the aforementioned task-parallel architecture to
data-parallel architecture. Instead of assigning pipeline stages to each CPU core,
we dispatch sequential sensor data arrivals across all the CPU cores in a round-
robin manner. By exploiting this temporal parallelism, our perception architecture
achieves frame rates that scale with the number of CPU cores, yielding near-
optimal perception delays. Additionally, we apply partial GPU acceleration instead
of conventional full GPU acceleration that is too biased towards delay optimizations.
In contrast, our perception architecture selectively accelerates only a portion of
given DNNs, offering flexibility in providing both frame rate-optimal and delay-
optimal system configurations.

1 Introduction

Real-time perception systems should maximally utilize the given computing resources to provide the
maximum system performance, targeting the following two performance metrics: (i) frame rate and
(ii) perception delay. The frame rate indicates the system’s throughput, while the perception delay
indicates the input-to-output latency. Both have crucial impacts on mission-critical applications like
autonomous driving, where many perception systems employ the multithreaded pipeline architecture
that exploits the task-level parallelism in perception tasks. This task-parallel architecture assigns
each pipeline stage to dedicated CPU cores running in parallel to improve the frame rate, however, at
the cost of additional pipeline stall delays by imbalanced pipeline stages [1]. Moreover, if the degree
of task-level parallelism is less than the number of given CPU cores, the remaining CPU cores cannot
be utilized.

Based on the above observations, this study introduces a perception system architecture designed
to maximize the utilization of available computing resources, thereby maximizing the system per-
formance. Our basic idea is to migrate from the task-parallel architecture to the data-parallel
architecture to exploit the data-level parallelism instead of the limited task-level parallelism. The
original meaning of data-level parallelism is to (i) partition input data, (ii) process each of them in
parallel, and (iii) compose an output (i.e., spatial parallelism). We extend this notion along the time
domain by dispatching repeatedly arriving sensor data to CPU cores in a round-robin manner (i.e.,
temporal parallelism). This way, the frame rate becomes scalable to the number of CPU cores while
minimizing the perception delay.

∗These authors contributed equally to this work.

Symposium on Machine Learning for Autonomous Driving (ML4AD 2023).



…

Perception results

Time

…

Sensor data

Time

Pre-processing

(Resizing)

Post-processing

(NMS)

DNN inference

(Object Detection)

…

Perception (Object Detection) Task

Our Perception System Architecture

CPU 1 CPU 2 CPU 3 GPUCPU M

Input 

Dispatch

Jitter 

Compensation

Partial GPU 

Acceleration

Figure 1: DNN-based perception system architecture.

Fig. 1 shows a typical perception system architecture, where multiple CPU cores and a GPU are
given as computing resources. We assume a deep neural network (DNN)-based perception task
that consists of three stages of pre-processing (e.g., resizing), inference (e.g., object detection), and
post-processing (e.g., non-maximum suppression (NMS)). The perception task should efficiently
utilize the given computing resources. For that, our perception system architecture provides three key
features of (i) input dispatch, (ii) jitter compensation, and (iii) partial GPU acceleration.

Input dispatch. Our input dispatcher receives periodically arriving sensor data (e.g., camera images)
while monitoring the independent progress of perception tasks on the CPU cores. Then a new sensor
data arrival is assigned to an available CPU core in a round-robin manner, trying to maximally utilize
the CPU cores for the maximum frame rate. This way, the frame rate can easily scale to the number
of CPU cores. Once the system’s achievable frame rate is decided, the same sensor data arrival
rate can be processed without any additional delays like the pipeline stall delays in the task-parallel
architecture.

Jitter compensation. Since the data-parallel architecture makes all the CPU cores busy at the
same time, memory contention delays are unavoidable to some extent. Moreover, due to the low
predictability of such contentions, the perception task’s execution time is with random variations (i.e.,
jitter). To minimize this unpredictability, we employ the logical execution time (LET) concept [2, 3]
to emulate a constant execution time by adding a busy loop that waits until a predefined (measured in
our case) worst-case execution time (WCET). In this manner, we can remove most jitters. Please note
that the exact WCET analysis or measurement method is out of this study’s scope.

Partial GPU acceleration. Recent systems on chip (SoCs) typically include an integrated GPU,
which can be utilized to accelerate the DNN-based inference stage. Here, we assume that the pre-
and post-processing stages do not need GPU accelerations. The conventional method is to accelerate
the whole DNN layers at the same time. This full GPU acceleration can dramatically reduce the
perception delay to the optimal point. Besides, the frame rate is also significantly enhanced. However,
we found that the resulting frame rate is suboptimal, since the overutilized shared GPU quickly
becomes a bottleneck. With this observation, we propose a partial GPU acceleration that finds an
optimal subset of DNN layers to be accelerated that maximizes the frame rate to the optimal point.
This method implements both the frame rate-optimal and the delay-optimal system configurations.

Our perception system architecture is implemented based on the Darknet DNN framework [4], which
is a state-of-the-art DNN framework widely used in autonomous driving vehicles due to its high
performance and portability. Since the Darknet framework is based on the task-parallel architecture,
we modify it based on our proposed architecture. Our experimental results with the DenseNet [5]
classification network on an Nvidia Jetson AGX Orin platform show scalable frame rates with near-
optimal perception delays by the data-parallel architecture. Our implementation also demonstrates
the practicality of the partial GPU acceleration method by selectively achieving both the frame
rate-optimal and delay-optimal results.

The contributions of this study can be summarized as:

• We present the data-parallel perception system architecture that maximally utilizes given
CPU and GPU computing resources for the maximum system performance.

• We present the partial GPU acceleration method that selectively accelerates given DNN
layers for the flexible optimization of frame rates and perception delays.

2



2 System Model and Problem Description

2.1 System Model

This study considers a real-time perception system with M identical CPU cores and a single GPU
accelerator, denoted by {C1, C2, · · · , CM} and G, respectively. We assume only a single GPU since
most embedded hardware platforms use an integrated GPU without supporting external GPUs. A
perception sensor (e.g., camera, LiDAR, and radar) is connected to the system through a dedicated
bus (e.g., USB and Ethernet). This study assumes a single sensor configuration, and the sensor is
assumed to have the freedom to adjust its sampling frequency according to the perception system’s
provided frame rate. Note that this study is interested in the maximum achievable system performance
without assuming prefixed discrete sensor frequencies.

In the system, there is a DNN-based perception task that processes the sensor data to produce its
perception results. Object detection and image classification can be typical examples. From now on,
we narrow down our focus on camera-based perception tasks, which are generally composed of the
following three stages:

• Pre-processing: This stage reads the sensor data, which are then prepared according to the
DNN’s input requirements. For example, raw camera images can be resized and quantized
before going through a DNN.

• Inference: This stage does the forward propagation through the DNN layers, sequentially
from the first layer to the last layer, to produce raw DNN outputs. This layer-by-layer
execution is commonly found in most DNN models.

• Post-processing: This stage produces the final perception results from the raw DNN outputs.
For example, non-maximum suppression (NMS) is typically applied to remove redundant
detections in many object detection systems.

We assume that the pre-processing and post-processing stages can be only executed by a CPU core,
while the inference stage can be selectively executed by a CPU core or by a GPU. In some cases, the
pre- and post-processing stages can also be accelerated by GPUs when there are multiple GPUs in
the system. However, since we assume only a single GPU, it is a natural choice to dedicate the GPU
to accelerate the inference stage.

The worst-case execution time (WCET) of the pre- and post-processing stages are denoted by epre
and epost, respectively, assuming they run on CPU cores. When the inference stage is executed on a
CPU core, its WCET is denoted by eCPU

infer. In contrast, when the inference stage is accelerated by
the GPU, its WCET is denoted by eGPU

infer. Without considering any specific resource allocation, the
WCET of the inference stage is generally denoted by einfer. Then the total WCET is also given by

etotal = epre + einfer + epost. (1)

During the inference stage, a DNN model is given as N layers, denoted by {l1, l2, · · · , lN}, where
each layer represents a DNN operation such as fully-connected layers and convolutional layers. Due
to the independence of each layer execution, each layer can select its computing resource. Each i-th
layer’s per-layer WCET is generally denoted by einfer(i). When specifying a specific computing
resource, we use eCPU

infer(i) and eGPU
infer(i), respectively.

A perception system’s performance is represented by a tuple

(f, d), (2)

where f is the frame rate and d is the perception delay. The frame rate indicates the number of images
the system can process in a unit time, usually expressed by a frames per second (FPS) value. The
perception delay is defined as the elapsed time from the arrival of sensor data to the output of the final
perception results. If no additional delay factor exists, the perception delay can be as short as etotal.
The frame rate and the perception delay are crucial to autonomous systems’ overall performance and
safety. Also, note that there are various timing requirements. For example, some applications require
a very high frame rate with a somewhat relaxed perception delay. In another case, the frame rate can
be relaxed with a tighter delay requirement.

3



Perception results

…Core 1

Core 2

Core 3

Core 4

Time

Infer PostPreInfer PostPre Infer PostPreInfer PostPre

Sensor data

IDLE

IDLE

IDLE

…

Perception delay

IDLE

(a) Sequential architecture.

Post PostPostPost

Time

…

Pre

Infer Infer

Post

Infer

Core 1

Core 2

Core 3

Core 4

…

IDLE

…Infer

…

Perception delay

IDLE

…

Infer

Pre Pre Pre

Post

(b) Task-parallel architecture, exploiting task-level parallelism.

Post

Post

Post

Post Infer Infer PostPre

Post

Infer

Time

…

Pre

Pre

Infer PostPre

Pre Infer PostCore 1

Core 2

Core 3

Core 4 …

…

…

…

…

Perception delay

Infer

Infer

Post

Post

…

(c) Data-parallel architecture, exploiting data-level parallelism.

Figure 2: Comparison of perception system architectures.

2.2 Problem Description

Based on the above system model, our problem is to design a perception system architecture that
provides the maximum system performance, considering both the frame rate and the perception delay.
This study limits our problem to running the perception task as the only real-time task in the system
because our objective is to make the perception task maximally utilize the computing resources for
the maximal system performance.

3 Migrating Data-parallel Architecture

3.1 Sequential Architecture

Fig. 2a depicts the sequential architecture, where the pre-processing (Pre), inference (Infer), and
post-processing (Post) stages are sequentially executed by a single thread with a limited utilization of
just a single CPU core. The downward arrows indicate sensor data arrivals that go through the three
stages to produce the perception results. The red thick arrow illustrates the data flow, indicating the
perception delay. In the sequential architecture, the perception delay, denoted by dseq , is given as

dseq = etotal = epre + einfer + epost (3)

since it does not experience any extra delays besides each stage’s execution. Also, the frame rate,
denoted by fseq , is simply the inverse of the perception delay, as in

fseq =
1

dseq
. (4)

4



Although the sequential architecture is the most naïve approach, it exhibits the optimal perception
delay that cannot be further reduced in any way 1. Meanwhile, the sequential architecture provides
the worst frame rate since it utilizes only a single CPU core out of the given CPU cores without
exploiting any parallelism in the perception task.

3.2 Task-parallel Architecture (a.k.a. Multithreaded Pipeline Architecture)

For more effective utilization of the given computing resources, many state-of-the-art perception
systems employ the multithreaded pipeline architecture to exploit the task-level parallelism in
perception tasks (hereafter referred to as task-parallel architecture). Fig. 2b depicts the task-parallel
architecture, where the three perception stages are decomposed into three independent pipeline stages
that run in parallel on three different CPU cores. Unfortunately, however, the synchronous pipeline
cycle of the task-parallel architecture, denoted by stpa, is determined by the longest among the three
pipeline stages (the inference stage in the figure), as in

stpa = max({epre, einfer, epost}). (5)

Then, to estimate the perception delay, we have to take the pipeline stall delay into account, which
can be observed between the pre-processing stage and the inference stage caused by the imbalanced
pipeline stages. As a result, the perception delay, denoted by dtpa, becomes the sum of two pipeline
cycles added by one post-processing execution time, as in

dtpa = 2stpa + epost. (6)

Although the perception delay is inferior to the sequential architecture, the frame rate is significantly
enhanced by exploiting the task-level parallelism. In the task-parallel architecture, the frame rate,
denoted as ftpa, is given as the inverse of the pipeline cycle time, as in

ftpa =
1

stpa
=

1

max({epre, einfer, epost})
. (7)

Here, we realize that sometimes there is a tradeoff relation between the frame rate and the perception
delay when optimizing the system performance. The task-parallel architecture in particular provides
enhanced frame rates at the cost of deteriorated perception delays. Furthermore, unfortunately, the
task-parallel architecture also fails to fully utilize the given CPU cores, utilizing only three of them.
If we have more than three CPU cores, which is highly probable, the remaining CPU cores cannot be
utilized by the task-parallel architecture, significantly underutilizing the given computing resources.

3.3 Data-parallel Architecture

To overcome the aforementioned limitations, we shift from the task-parallel architecture to the data-
parallel architecture to exploit the data-level parallelism instead of the limited task-level parallelism.
In our perception tasks, there are two kinds of noticeable data-level parallelism that can be exploited:
(i) spatial parallelism and (ii) temporal parallelism. By exploiting the spatial parallelism, we can
decompose an input data into multiple pieces that can be processed independently, which, however,
can cause significant perception errors along the border lines. Alternatively, our choice is to exploit
the temporal parallelism. Fig. 2c shows our data-parallel architecture particularly exploiting the
temporal parallelism, where each sensor data arrival is dispatched to an available CPU core among
the M CPU cores in a round-robin manner. Since they are independently processed on multiple
CPU cores in parallel, the frame rate can scale linearly proportional to the number of CPU cores.
Besides, there are no extra delays like the pipeline stall delays found in the task-parallel architecture.
Ideally, the perception delay can be as small as the sequential architecture that guarantees the optimal
perception delay (i.e., near-optimal perception delay). In practice, however, we have unavoidable
memory contention delays by making all the CPU cores busy at the same time. Thus, the perception
delay by our data-parallel architecture, denoted by ddpa, is given by

ddpa = epre + einfer + epost + ϵ, (8)

where ϵ denotes the collective memory contention delay, which depends on many factors such as
workload characteristics and cache architectures. Here, our argument is that since we execute the

1Here, we do not consider the GPU acceleration, which will be discussed in Section 4.

5



exactly identical task code on every CPU core, the memory contention delay can be minimized in
contrast to usual multi-tasking scenarios with more complex mixture of applications. In the meantime,
the frame rate of our data-parallel architecture, denoted by fdpa, is the inverse of the perception delay
multiplied by M , given by

fdpa =
M

ddpa
, (9)

since each CPU core independently produces the frame rate of 1/ddpa. Thus, by a large number
of CPU cores, which is common in many modern SoCs, our data-parallel architecture can realize
significantly increased frame rates by maximally utilizing all the given CPU cores.

With the above observations, we claim that with modern multicore SoCs, our proposed data-parallel
architecture significantly outperforms the conventional task-parallel architecture in terms of the frame
rate and the perception delay at the same time. To be more specific, the frame rate is almost linearly
scalable to the number of CPU cores, while the perception delay approaches the optimal point of the
sequential architecture with just a small increase caused by memory contentions.

LET-based jitter compensation. One extra issue is the jitter problem, which is vivid in the data-
parallel architecture, due to the unpredictable memory contention among the busy CPU cores being
forced to be fully utilized. The jitter makes it difficult to estimate the completion time of currently
running perception tasks. Also, the jitter makes it difficult to clearly pinpoint the achievable frame
rate if it has non-negligible fluctuations. With this challenge, we use the LET concept to make a
constant perception delay by adding an artificial busy loop counting until the predefined WCET.
Then we can consider perception tasks having constant execution times, significantly simplifying the
system design.

4 Partial GPU Acceleration

4.1 GPU-based DNN Acceleration for Optimal Perception Delay

Thus far, we have utilized only the CPU cores without considering the GPU, as depicted in Fig. 3a.
To further enhance the system performance, the inference stage needs to be accelerated by the GPU.
Regarding the GPU acceleration, the usual approach is to accelerate the whole DNN layers at the
same time (i.e., full GPU acceleration), as depicted in Fig. 3b, which will significantly reduce the
perception delay from (8) to

dGPU
dpa = epre + eGPU

infer + epost, (10)

where eGPU
infer must be much smaller than eCPU

infer. Also, since eGPU
infer cannot be further reduced by

already accelerating all the layers, we can say that the perception delay is optimal by the full GPU
acceleration.

However, even with the dramatic effect by the full GPU acceleration on the perception delay, the
same dramatic effect is not guaranteed on the frame rate. While sounding counter-intuitive, recall that
we have only a single GPU, which is a shared resource among all the perception instances running
in parallel on many CPU cores. Thus, the GPU easily becomes a bottleneck, significantly limiting
the scalability benefit of the frame rate by the data-parallel architecture. Imagine we begin with a
very low frame rate, then the GPU will not be a bottleneck. However, by gradually increasing the
frame rate, the perception instances are eventually forced to be serialized by the GPU at some point.
Considering this GPU bottleneck effect, the frame rate after the full GPU acceleration, denoted by
fGPU
dpa , is updated from (9) to

fGPU
dpa = min

({
M

dGPU
dpa

,
1

eGPU
infer

})
, (11)

where M
dGPU
dpa

is the maximum frame rate the M CPU cores can maximally produce before reaching

the GPU bottleneck, while 1
eGPU
infer

is the bottlenecked frame rate, with all the inference stages of the

perception instances strictly serialized by the GPU. Then the minimum of the two values will be the
actual frame rate. If the system is bottlenecked by the GPU, the scalability benefit of multiplying M
disappears, which means that the frame rate is suboptimal by the full GPU acceleration.

6



4.2 Partial DNN Acceleration for Optimal Frame Rate

In
p

u
t 

D
is

p
a

tc
h

er

Pre Post

Pre Post

CPU 1

CPU 2

CPU M

Pre PostCPU 3

……

Pre Post

GPU

(a) No GPU acceleration.

Post

In
p

u
t 

D
is

p
a

tc
h

er

Pre

Pre

CPU 1

CPU 2

CPU M

PreCPU 3

……

GPU

Post

Post

Post

Pre

…

(b) Full GPU acceleration.

In
p

u
t 

D
is

p
a

tc
h

er

Post

Pre

Pre

Pre

CPU 1

CPU 2

CPU M

PreCPU 3

……

GPU

Post

Post

Post

…

(c) Partial GPU acceleration.

Figure 3: Comparison of Data-Parallel Architec-
tures for Partial DNN Acceleration.

To maximize the frame rate by more efficiently
utilizing the GPU resource, we present a partial
GPU acceleration scheme, as depicted in Fig. 3c.
Recall that the GPU acceleration only applies to
the inference stage, where N DNN layers are exe-
cuted in a layer-by-layer manner. Here, each layer
has a freedom to choose the computing resource
upon which it executes. In our system model, we
have two choices of CPU and GPU. Although we
can try every combination of mixed CPU layers
and GPU layers, this study downsizes the problem
space by defining the problem as splitting the N
layers into the first k GPU-accelerated layers and
the remaining N−k non-accelerated layers. Thus,
our problem is to find the optimal k (0 ≤ k ≤ N)
that maximizes the frame rate. In our problem,
the execution time of the inference stage with k
GPU-accelerated layers can be represented as

e
GPU(k)
infer =

k∑
i=1

eGPU
infer(i)+

N∑
i=k+1

eCPU
infer(i). (12)

We propose an iterative optimization process that
begins with k = 0 meaning no GPU accelera-
tion. If we gradually increase k, the execution
time decreases by accelerating more and more lay-
ers. Some layers will experience dramatic effects,
while some others with relatively minor effects.
The impact of the GPU acceleration heavily de-
pends on the layer type and size. In our experience,
for example, the larger layer (i.e., larger number
of parameters) is better accelerated. Thus, we try
every possible k, from 0 to N , while measuring
the perception delay and the frame rate to find the
delay-optimal k and the frame rate-optimal k. As noted in Section 4.1, the delay-optimal k is sure to
be N , while the frame rate-optimal k cannot be simply said before trying the iterative optimization.
However, the optimal k will make an equilibrium system state, where the GPU is barely but fully
utilized and the CPU cores never waits for the GPU.

5 Experiments

5.1 Implementation

We implemented our proposed architecture on an Nvidia embedded hardware platform. Our experi-
mental platform is Nvidia Jetson AGX Orin with 32 GB RAM, a 12-core 2.2 GHz ARM CPU, and
an integrated Ampere GPU with 2048 CUDA cores. Out of the 12 CPU cores, the first CPU core is
dedicated to essential OS processes by the isolcpus Linux kernel parameter such that the remaining
11 cores (i.e., M=11) as well as the GPU are completely dedicated to the execution of the perception
task. As our software platform, we use Nvidia Ubuntu 20.04.6 LTS with CUDA 11.4.239 and JetPack
5.0.2. Our implementation is based on Darknet [4, 6], which is one of the most well-known DNN
frameworks originally developed for the YOLO object detection networks. Darknet employs the
task-parallel architecture with three pipeline stages, exactly following our system model in Section 2.1.
We modified Darknet to reflect our system design including the data-parallel architecture, the jitter
compensation, and the partial GPU acceleration.

7



Seq Tpa Dpa
0

5

10

15

20

25

Fr
am

e 
ra

te
 (F

PS
)

2.01 2.02

19.05

(a) Frame rate.

Seq Tpa Dpa
0

250

500

750

1000

Pe
rc

ep
tio

n 
de

la
y 

(m
s)

497.52

978.28

577.29

(b) Perception delay.

Seq Tpa Dpa
0.0

0.5

1.0

1.5

2.0

2.5

En
er

gy
 c

on
su

m
pt

io
n 

(W
s)

1.79 1.71

1.09

CPU

(c) Per-image energy consumption.

Figure 4: Performance comparison with 11 CPU cores.

k

(a) Frame-rate perspective.

k
(b) Cycle-time perspective.

Figure 5: Iterative optimization for finding the frame-rate optimum by partial GPU acceleration.

5.2 Evaluation Results

Using our perception architecture implementation, we deploy DenseNet [5] with 306 layers as our
workload. DenseNet is one of the most well-known convolutional neural networks (CNNs) for
image classification. The system performance (i.e., frame rate and perception delay) and energy
consumption is measured to compare the following architectures:

• Seq: Sequential architecture (Section 3.1),
• Tpa: Task-parallel architecture (Section 3.2), and
• Dpa: Data-parallel architecture (Section 3.3).

Fig. 4a compares the frame rate, where Dpa significantly outperforms Seq (948%). The theoretical
speed-up can be 1100% since Dpa utilizes 11 CPU cores simultaneously while Seq is with a single
CPU core. Even with the non-negligible memory contention overhead, the result shows that Dpa
successfully utilizes all the CPU cores for the maximum frame rate. Another interesting observation
is that Tpa is not meaningfully enhanced from Seq. It is due to the extremely imbalanced pipeline
stages of DenseNet.

Fig. 4b compares the perception delay. Note that Dpa is comparable to Seq’s optimal perception
delay with a marginal overhead (+16%). In contrast, Tpa shows a significantly increased perception
delay (+97%) caused by long pipeline stall delays. As a result, Tpa is the worst choice for DenseNet
since it provides almost the same frame rate with a significantly increased perception delay from Seq.

Fig. 4c compares the per-image energy consumption. The figure shows that Dpa is the most energy-
efficient method, which may sound counter-intuitive in the first place. However, it can be understood
that the frame rate increase multiplier is significantly greater than the energy consumption increase
multiplier, making Dpa the most energy-efficient choice.

Fig. 5 shows the iterative optimization process to find the frame rate-optimal configuration with our
partial GPU acceleration. The two figures show the same results with different perspectives. Fig. 5a
particularly shows the frame rate, while Fig. 5b shows its inverse (i.e., cycle time). The figures show

8



Seq
(Full)

Tpa
(Full)

Dpa
(Full)

Dpa
(Partial)

0

20

40

60

80

Fr
am

e 
ra

te
 (F

PS
)

36.46

54.41 55.53

73.97

(a) Frame rate.

Seq
(Full)

Tpa
(Full)

Dpa
(Full)

Dpa
(Partial)

0

50

100

150

Pe
rc

ep
tio

n 
de

la
y 

(m
s)

27.42 35.47 28.77

146.06

(b) Perception delay.

Seq
(Full)

Tpa
(Full)

Dpa
(Full)

Dpa
(Partial)

0.0

0.2

0.4

0.6

0.8

En
er

gy
 c

on
su

m
pt

io
n 

(W
s)

0.47 0.44 0.46
0.58

CPU GPU

(c) Per-image energy consumption.

Figure 6: System performance comparison with full and partial GPU acceleration (11 CPU cores and
a GPU).

that by accelerating more and more layers, the perception delay monotonically decreases. In contrast,
the frame rate increases until reaching the optimal frame rate (73.97 FPS) with k=169. Then the
frame rate begins to decrease meaning that it is bottlenecked by the GPU.

Fig. 6 compares the perception architectures with possibly different GPU accelerations. The full
GPU acceleration is denoted by (Full), while the partial GPU acceleration is denoted by (Partial) that
specifically means the frame rate-optimal configuration. Fig. 6a shows that Dpa (Partial) achieves
the optimal frame rate (73.97 FPS). However, Fig. 6b shows that Dpa (Partial) has a significant side-
effect of an increased perception delay. In contrast, Dpa (Full) exhibits a near-optimal perception
delay comparable to Seq (Full) while providing a comparable frame rate to Tpa (Full). Thus,
Dpa (Full) is the best choice among the four if the perception delay is more important than the
frame rate. Also note that Fig. 6c shows that Dpa (Full) is also very energy efficient. In contrast,
Dpa (Partial) is the worst in terms of energy consumption since it makes all the computing resources
(i.e, CPU and GPU) busy.

6 Related Work

The system optimization in DNN-based applications plays important roles in autonomous driving [7,
8, 9, 10, 11, 12]. Among them, this study focuses on the perception system. Many such perception
systems are based on the task-parallel architecture. In [13], a parallel-pipeline architecture is proposed
to improve the object detection throughput by slightly sacrificing the delay. In contrast, R-TOD [1]
minimizes the object detection delay by optimizing every end-to-end delay component at the cost
of the slightly reduced frame rate. Both studies are based on the task-parallel architecture without
exploiting the data-level parallelism as our proposed architecture. DART [14] exploits the data-level
parallelism for the deterministic execution of real-time tasks. However, DART exploits only the
spatial parallelism without considering the temporal parallelism as our proposed architecture.

7 Conclusion

This study presents a data-parallel real-time perception system with partial GPU acceleration. Our
perception architecture maximally utilizes the given computing resources including CPUs and GPUs
for the maximum system performance. For that, we migrate from the conventional task-parallel
architecture to the data-parallel architecture that specifically exploits the temporal data parallelism
while processing the perception tasks. Also, our partial GPU acceleration framework accelerates only
a fractional subset of given DNN layers that maximizes the frame rate. While the conventional full
GPU acceleration always provides the optimal perception delay, it does not guarantee the optimal
frame rate. An iterative optimization is used to find the frame rate-optimal and delay-optimal system
configurations based on the partial GPU acceleration framework. Our perception system architecture
is implemented with an Nvidia embedded platform and evaluated with the Darknet DNN framework
and the DenseNet image classification network. In the future, we plan to extend our framework to
multi-DNN systems by considering preemptive scheduling among multiple DNNs.

9



Acknowledgment

This work was supported by the BK21 Four Program (5199990814084) of the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Korea. J.-C. Kim is the correspond-
ing author of this paper.

References
[1] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Real-time object detector with

minimized end-to-end delay for autonomous driving,” in Proc. 41st IEEE Real-Time Systems
Symposium (RTSS), pp. 191–204, 2020.

[2] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-triggered language for
embedded programming,” Proc. IEEE, vol. 91, no. 1, pp. 84–99, 2003.

[3] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,” Advances in Real-Time
Systems, pp. 103–120, 2012.

[4] J. Redmon, “Darknet: Open source neural networks in C.” http://pjreddie.com/darknet/,
2013–2016. Accessed: 2023-11-16.

[5] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proc. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4700–4708, 2017.

[6] A. Bochkovskiy, “Darknet: Open source neural networks in C.” https://github.com/
AlexeyAB/darknet. Accessed: 2023-11-16.

[7] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The architectural
implications of autonomous driving: Constraints and acceleration,” in Proc. 23rd International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 751–766, 2018.

[8] W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible layer-by-layer cpu/gpu
scheduling for real-time dnn tasks,” in Proc. 42nd IEEE Real-Time Systems Symposium (RTSS),
pp. 329–341, 2021.

[9] W. Kang, S. Chung, J. Y. Kim, Y. Lee, K. Lee, J. Lee, K. G. Shin, and H. S. Chwa, “Dnn-sam:
Split-and-merge dnn execution for real-time object detection,” in Proc. 28th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp. 160–172, 2022.

[10] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha, and T. Abdelzaher, “On
removing algorithmic priority inversion from mission-critical machine inference pipelines,” in
Proc. 41st IEEE Real-Time Systems Symposium (RTSS), pp. 319–332, 2020.

[11] S. Liu, X. Fu, M. Wigness, P. David, S. Yao, L. Sha, and T. Abdelzaher, “Self-cueing real-
time attention scheduling in criticality-aware visual machine perception,” in Proc. 28th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 173–186, 2022.

[12] S. Heo, S. Jeong, and H. Kim, “Rtscale: Sensitivity-aware adaptive image scaling for real-time
object detection,” in Proc. 34th Euromicro Conference on Real-Time Systems (ECRTS), 2022.

[13] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-M. Frahm, “Re-
thinking CNN frameworks for time-sensitive autonomous-driving applications: Addressing an
industrial challenge,” in Proc. 25th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 305–317, 2019.

[14] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time
inference,” in Proc. 40th IEEE Real-Time Systems Symposium (RTSS), pp. 392–405, 2019.

10

http://pjreddie.com/darknet/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet

	Introduction
	System Model and Problem Description
	System Model
	Problem Description

	Migrating Data-parallel Architecture
	Sequential Architecture
	Task-parallel Architecture (a.k.a. Multithreaded Pipeline Architecture)
	Data-parallel Architecture

	Partial GPU Acceleration
	GPU-based DNN Acceleration for Optimal Perception Delay
	Partial DNN Acceleration for Optimal Frame Rate

	Experiments
	Implementation
	Evaluation Results

	Related Work
	Conclusion

